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The propagation of a soliton in a nonlinear optical fiber with a periodically modulated but sign-
preserving dispersion coefficient is analyzed by means of the variational approximation. The dynamics
are reduced to a second-order evolution equation for the width of the soliton that oscillates in an
effective potential well in the presence of a periodic forcing induced by the imhomogeneity. This equa-
tion of motion is considered analytically and numerically. Resonances between the oscillations in the
potential well and the external forcing are analyzed in detail. It is demonstrated that regular forced os-
cillations take place only at very small values of the amplitude of the inhomogeneity; the oscillations be-
come chaotic as the inhomogeneity becomes stronger and, when the dimensionless amplitude attains a
threshold value which is typically less than }, the soliton is completely destroyed by the periodic inho-

mogeneity.

PACS number(s): 42.81.Dp, 42.81.Ht, 03.40.Kf

I. INTRODUCTION

Propagation of solitons in nonlinear optical fibers is a
challenging physical problem with very promising practi-
cal applications [1,2]. As is well known, the evolution of
an envelope of electromagnetic waves in a monomode
fiber is described, with high accuracy, by the nonlinear
Schrodinger (NLS) equation

iu, +Lu, +ulfu=0, (1)

where z is the propagation distance and ¢ is the so-called
reduced time [1,2]. It is also well known that the NLS
equation is exactly integrable by means of the inverse
scattering transform [3], so allowing construction of a
number of exact solutions in explicit form. Nevertheless,
since not all the physically interesting solutions can be
found explicitly, less rigorous methods have been
developed to describe the required solutions approxi-
mately. Among these methods, the simplest and most
elegant is based upon the Lagrangian representation of
the NLS equation [4]. The technique is particularly use-
ful since it can be applied to perturbations of Eq.(1)
which are not exactly integrable, such as arise for inho-
mogeneous fibers.

The general idea underlying this approximation is well
known: one presumes a certain ansatz for the shape of
solution sought, but leaves in the ansatz a set of free pa-
rameters which may evolve with z. Next one evaluates
the full Lagrangian of the NLS equation when the ansatz
is inserted. When doing this, all z differentiations which
appear in the Lagrangian are applied to the above-
mentioned free parameters. Eventually, one finds the La-
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grangian as a function of the free parameters and their
first derivatives. The resulting variational equations for
this effective Lagrangian then become a system of ordi-
nary differential equations (ODE).

The most important exact particular solution to the
NLS equation (1) is the soliton

U (2z,t)=a ~'sech(t /a)exp(lia “%z) , ()

where the arbitrary parameter a measures the soliton
“width.” Expression (2) shows that the amplitude @ ™!
and wave number 1a ~2 of the soliton are determined by
a. An interesting and practically important question is,
how will a solitary pulse initially having a sech profile as
in Eq. (2) evolve if its initial amplitude 4 and width a do
not satisfy a4 =1? From inverse scattering theory the
answer is well known: as z— o0, the pulse will evolve
into a soliton with different amplitude and into quasilin-
ear dispersive waves (radiation). The relevant “scattering
data” were first given in Ref. [S]. However, in reality, the
asymptotic stage of the evolution may arise only at very
large z, while in an intermediate region the actual dynam-
ic behavior may be quite different. To describe these in-
termediate dynamics approximately, the variational tech-
nique was applied in Ref. [6] with trial wave form (an-
satz) [cf. Eq. (2)]

u(z,t)= A(z)sech{t/a(z)}exp{i[@(z)+b(2)t?]} . (3)

The meaning of the parameters A4 (z), a(z), and @(z) is
obvious. The parameter b (z), the so-called chirp, charac-
terizes the dependence of the carrier frequency on posi-
tion within the soliton. The set of evolution equations
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arising when the ansatz (3) is inserted into the full La-
grangian for (1) may be reduced [6] to a single second-
order equation for a(z). Formally, that resulting equa-
tion may be regarded as the equation of motion for a
mechanical particle in a smooth potential well with an
infinitely high wall at a =0 and vanishing potential as
a— . If the “particle” initially has positive energy, a
escapes to infinity, corresponding to complete decay of
the pulse into radiation [although the radiation degrees of
freedom are not included in the ansatz (3)]. Alternative-
ly, if the initial energy is negative, the ‘particle” is
trapped within the potential well and oscillates. These
oscillations correspond to periodic oscillations of the
shape of the pulse (3). Of course, within the framework
of the full NLS equation (1), the oscillations will be grad-
ually damped due to radiative losses so that eventually
the particle falls to the bottom of the well (which itself
becomes shallower due to radiation). The rest state of the
“particle” corresponds to the exact soliton solution (2).

In the present work, we use the above technique to
study the evolution of a sech-shaped pulse in an inhomo-
geneous fiber. Note that usually nonlinear fibers operate
in a spectral region near the zero of the dispersion
coefficient [the coefficient of Ju, which has been scaled
to unity in Eq. (1)], to allow competition between disper-
sion and the weak Kerr nonlinearity of silica [1,2]. Since
the total dispersion coefficient, being the sum of material
dispersion of the silica and of geometric dispersion, is
rather small, it can be quite sensitive to small changes
due to inhomogeneity. Recent works [7-9] have ana-
lyzed some effects arising near a point where fiber inho-
mogeneity causes the dispersion coefficient to change
sign. These effects include the decay of a soliton passing
from an anomalous-dispersion domain [such as described
by Eq. (1)] to a normal-dispersion domain (with negative
coefficient of tu,) where solitons cannot exist [7]; devel-
opment of modulational instability of a continuous wave
traveling in the opposite direction in either a monomode
or bimodal fiber [8]; and formation of a soliton from an
initial localized pulse passing from a domain of normal
dispersion to one of anomalous dispersion [9]. In this pa-
per, we concentrate on the case of a dispersion coefficient
which is periodically inhomogeneous but always positive,
so that the fiber exhibits anomalous dispersion every-
where.

The underlying physical idea to be developed is that
oscillations of the soliton shape may resonate with the
periodic inhomogeneity of the fiber. We show that, when
the soliton is close to resonance, a relatively small ampli-
tude of the inhomogeneity is sufficient to completely des-
troy a soliton which otherwise would be stable. [For the
particular inhomogeneity profile given by Eq. (11) below,
the threshold amplitude € for fiber inhomogeneity above
which the soliton is completely destroyed is typically
below 1.] At smaller values of the inhomogeneity ampli-
tude, a resonantly driven soliton exhibits, in most cases,
chaotic shape oscillations.

Results in Ref. [6] show that a typical length scale for
the natural oscillations of soliton shape in a homogeneous
fiber are comparable with the so-called ‘“‘soliton period,”
which is inversely proportional to the square of the soli-
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ton width. This period may be hundreds of kilometers
for picosecond solitons [1,2], but up to eight orders of
magnitude smaller for femtosecond pulses. Since this is
comparable with typical inhomogeneity periods, the reso-
nance effect can be practically important in the fem-
tosecond range.

The problem outlined and the results obtained, besides
having considerable methodological interest, may find
two practical applications: (i) in determining how possible
inhomogeneities within the fiber can affect propagation
conditions for optical solitons: and (ii) in exploiting the
strong interaction of a soliton with an artificially formed
periodic inhomogeneity within soliton-based optical logic
elements.

With regard to artificial periodic inhomogeneity, much
work exists concerning solitons in fibers with periodically
inhomogeneous refractive index (see, e.g., the recent pa-
pers [10], and references therein). The model to be con-
sidered here differs from those considered previously,
since it includes dispersion, which is usually ignored in
those models. However, our model omits Bragg coupling
between counterpropagating waves, which was the cen-
tral point in Refs. [10]. Nevertheless, periodic modula-
tion of the refractive index is apt to generate, at least as a
byproduct, a parallel modulation of the dispersion
coefficient, so that the effects to be analyzed here are
relevant to that work.

The paper is organized as follows. In Sec. IT we outline
the derivation of the evolution equations for the parame-
ters in (3), omitting some details since the derivation is
essentially similar to that developed for a homogeneous
fiber in [6]. As in Ref. [6], the final form of the effective
evolution equation is equivalent to the equation of motion
for a particle in a potential field, the coordinate of the
“particle” being the soliton width a. However, the poten-
tial changes periodically in “time” and, additionally, the
“particle” is subject to a “friction force,” with “friction
coefficient” also periodic in “time.” In Sec. III we ana-
lyze the three most interesting cases in which resonance
between the shape oscillations and the inhomogeneity
might be expected. This analysis follows classical non-
linear resonance theory [11], being based upon expansion
in powers of the perturbation in a¢ and small detuning
from resonance. Last, in Sec. IV we display results of
direct numerical simulations of the above-mentioned
effective equation of motion. We first consider small os-
cillations under near-resonant conditions, showing that
oscillations may become chaotic (quasiharmonic locally
but irregularly modulated) at fairly small values of the in-
homogeneity amplitude. We then consider in some de-
tails the way in which inhomogeneity can completely des-
troy a soliton—corresponding in the “particle” analogy
to escape to infinity from the potential well. Using simu-
lations, we concentrate on finding the threshold charac-
teristics. Concluding remarks are gathered in Sec. V.

II. EVOLUTION EQUATIONS
FOR PARAMETERS OF THE SOLITON

In an inhomogeneous fiber with a z-dependent disper-
sion coefficient a(z), the underlying equation is the
variable-coefficient NLS equation:
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iu, +la(z)u,+ulPu=0. - 4)
The Lagrangian density which gives rise to Eq. (4) is
L=li(uu*—uru)—Lta(2)|u,|*+L1lul*, (5

the asterisk denoting a complex conjugate. As in Ref. [5]
one inserts the ansatz (3) into the Lagrangian density (5)
and then calculates the total Lagrangian f Lz t)dt,
where z differentiation is applied to the parameters occur-
ring in (3). Performing the integration and then taking
variations of the resulting Lagrangian with respect to all
the parameters yields a system of evolution which proves
to be a straightforward generalization of the equations
derived in Ref [6] for the case a(z)=1:

A%a=N?=const , (6)
b=%a'/aa R (7)
—a | 5N?
— =24 , 8
¢ 3a? 6a ®
n= |2 lgr= — |@fa 7= —42— N2aa™?2. (9)
T T

Here, the prime denotes d /dz and N? is an integration
constant which measures the intensity of the initial pulse.
Without loss of generality, the z scale may be chosen so
that a(z) has period 27. Then, writing

a=Q2ay/m)*a(z), N=(may/2)V*N ,
a(z)=ayd(z) ,

where a is the mean value of a(z), transforms Eq. (9) to
a’'—(a'/a)a’'=a*a *—Naa *.

Dropping the tildes finally yields the equation

U

da’

= a?a 2—aN%a 1,

Ula,a)=

1
2

(10)

which as mentioned earlier corresponds to a mechanical
equation of motion with “time”-dependent potential (see
Fig. 1) and periodic friction coefficient.

We assume that the spatial inhomogeneity is weak and,
for simplicity, take it in the sinusoidal form,

a(z)=1+e€sinz . (11)

In the limit €=0, Egs. (10) show that the “energy”
E=1(a'?+Ula,1) is conserved. This allows explicit in-
tegration, so giving z as a function a. In particular, if the
energy E is negative, the frequency g of anharmonic oscil-
lations of a particle in the potential well is

q=(2|E|)»*"?/N? . (12)

This corresponds to the wave number of the spatial oscil-
lations of soliton shape. The bottom of the well (see Fig.
1) corresponds to E=—1N* so that for small oscilla-
tions the limiting (maximum) value of the wave number
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FIG. 1. The shape of the potential (10) when a=1. The
minimum value Uy, =—4N* is attained at a=a,,=N"%
Ula,1)=0ata=ag,=iN"2

(12) is
go=N*. (13)

Resonance between the free oscillations and the small
driving force in Eq. (1) is expected when the wave num-
ber (12) is commensurate with the driving wave number
[1, for a(z) taken in the form (11)], i.e., when ¢ =m /n for
some integers m and n. Of course, only small values of m
and n are of practical interest. In the analytical work
within Sec. III, we shall concentrate on small-amplitude
oscillations for which go=N* and consider the simplest
resonances which occur for N* close to 4> 1, or 2. This
analysis is based on the equation of motion (10) with a(z)
in the form (11) and with a expanded in powers of
b(z)=a(z)—a,,, where a,, =N "2 is the location of the
bottom of the well for e=0. As is well known from the
classical theory of nonlinear resonance [11], in this ex-
pansion nonlinear terms should be retained up to order
b3%. Consequently, the appropriate approximation ob-
tained after simple algebra is

b"+ N3 —(cosz)b'=NOsinz +3N1%2—6N12p3
—4N83(sinz)b . (14)

III. ANALYSIS OF RESONANCES
FOR SMALL-AMPLITUDE OSCILLATIONS

A. The resonance near N*=1

First, we consider the case when the second harmonic
of small-amplitude oscillations resonates with the small
driving force. According to Eq. (13), this occurs for

N*=Ll(1+k), k<1, (15)

k being a small detuning from resonance. In this case, we
seek a solution to Eq. (14) in the form
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b(z)=b cos($z+38)+ b, cos(z+238)
+b,,sin(z +28)+ b, , (16)

where by, b,y, b,y, by, and 8 may all vary slowly with z,
while b, is the dominant coefficient. Inserting Eq. (16)
into Eq. (14), we first set the coefficients of the second and
zeroth harmonics to zero, to eliminate b,, b,,, and b, in
favor of b, and &:

bo=3b3V2, 17
_ | v2e | bt

bu=|— ysm(za) 5 | (18)

by, =—(V2€/3)cos(28) . (19)

Then, using relations (17)—(19) when setting to zero the
coefficients of the fundamental harmonic [the terms with
cos(4z+8) and sin(lz+8)] leads us to the following
equations for b,(z) and 8(z):
by=3eb,cos(28)—2b3 , (20a)
8 =1k —2esin(28)—15b7 . (20b)
Finally, by introducing the notation
K =2k /3¢, A=28, Z=3ez/2, B=b,/2V2e, (21)

Egs. (20) are simplified to

% =3B cosA—6B 3 _ (22a)
Z—§=K—-sinA—5B2 . (22b)

The system (22) possesses stationary points (Agy,B,) of
two types, the first being the obvious one,

B0=0, SinA():K ’ (23)

which exists for |K| < 1. Expressions (17)—(19) show that
each such stationary point corresponds to driven oscilla-
tions at the second harmonic, with negligible excitation
of free oscillations at the fundamental one. Elementary
analysis of the stability of these stationary points for (22)
shows that there are two instability growth rates

Y1=1coshg, Y,=—cosl, . (24)

Accordingly, each stationary point satisfying (23) is un-
stable, being a saddle point in the phase plane (A, B).

The second type of stationary solution to Egs. (22) is
given by

(25a)
(25b)

2
Bjy=4coslg,
sinAg+ ZcosAy=K .

Real solutions exist provided that Eq. (25b) has solutions
with cosAj >0, which requires that X lies in the interval

—1<K<E. (26

The eigenvalues ¥ for the instability growth rates associ-
ated with the roots (25) satisfy

y2+2y cosAg+ 1 cos?Ay— S K cosAy=0 . (27

Further analysis shows that, for each K lying within the
interval (26), there is a single stable stationary point
(Ag,By) with 0 < A <27 and that this is given by

BeosAg=3K+V1—(12K /13)? . (28)

In the narrow subregion 1 <K < £, Egs. (25) possess only
a solution with negative sign in front of the radical in
(28), but this solution is unstable. Further analysis of Eq.
(27) shows that the stable stationary points (Ag,B,) are
spirals for —1<K <3 and nodes for 5 <K <1. For
exact resonance (K =0), for which results of numerical
simulations are displayed in Sec. IV, the stationary
points are always stable spirals, as is seen in the phase
plane (A, B) given in Fig. 2. It may be noted that |B,| is
maximum just at K=23, the value separating spirals
from nodes.

Expressions (17)-(19) and (21) show that the stable sta-
tionary points (A,,B,) represent a “nonlinear mixture”
of the free oscillations at the fundamental and forced os-
cillations at the second harmonic. The free oscillations
have amplitude O(e!/?), while the second-harmonic con-
tributions are O(€), where € is the amplitude of the forc-
ing due to inhomogeneity.

When K lies outside the interval (26), the resonance is
strongly detuned and the system (22) has no stationary
points. In this case, all trajectories are dragged to the
line B =0, as shown in Fig. 3. This latter property fol-
lows from the fact that, if dS =d(B2)d A denotes an ele-
ment of the phase-plane area, the divergence divj of the
phase-plane flow defined by Eqgs. (22) is strictly negative:

d |dA 3 |dB?
dZ

divi=—- {=> =—24B7.

dz oB?

Thus all solutions have asymptotic state B =0. More-
over, referring to expressions (16)—(19) it is easy to see

FIG. 2. The phase plane of the dynamical system (22) in the
case K=0. The picture is periodic in A with period 2. The
lower half plane (not shown) is the mirror image of the upper.
The points F are the stable spirals given by Eqgs. (25a) and (28).
The saddles at the points B =0, A=xn (n=0,+1,%2,...) corre-
spond to Eq. (23) (with K =0).
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FIG. 3. The phase plane of the system (22) in the case when

K lies outside the interval (26): (a) K > %; b)) K< —1.

that, at least to the accuracy of the present analysis, this
asymptotic state is simply a second-harmonic oscillation
with the same period as the forcing due to inhomogenei-
ty, with negligible contribution from the resonantly cou-
pled fundamental. The final inference is that the reso-
nance (15) arises only in the interval —1 <K < given
by Eq. (26). As K— —1, the resonance behavior goes
over smoothly into nonresonance, since Egs. (25a) and

(28) show that B,—0. In contrast, as K — 13 the reso-

nance disappears abruptly, since Egs. (25a) and (28) give
B (2, =2 for K= % The reason is that, as mentioned ear-
lier, two stationary solutions to Egs. (22), the stable and
unstable ones, merge and disappear at the boundary
K=2.

B. The resonance near N*=1

Direct resonance of small-amplitude oscillations with
the periodic forcing occurs [ cf. Eq. (15)] for

N4=1+k, |kl<1. (29)

In this case, the analysis is simpler than before, since in-
spection of Eq. (14) shows that the only term proportion-
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al to € which contributes in the lowest approximation is
the first term on the right-hand side. Neglect of the other
terms yields from Eq. (14) the standard equation of the
classical nonlinear resonance theory [11]. Explicitly, sub-
stitution into Eq. (14) of an expansion [cf. Eq. (16)]

b(z)=bsinz +by+b,cos(2z) (30

for a steady solution allows b, and b, to be eliminated in
favor of b, as

b,=1b%, by=3b%. (31)

Then, the amplitude b, of the fundamental is found to
satisfy

2kb,—6b3 =€ . (32)

In the cases k <0, or k >0 with |e| > £k*/?, Eq. (32) has a
single root which corresponds to stable resonantly driven
oscillations. However, for k>0 with |e| <£k3/% there
are three roots, two stable and one unstable. It is well
known that, if one regards b, and a phase shift § of the
fundamental relative to the forcing as slowly varying
dynamical variables, the stationary point in the phase
plane (8,b,) corresponding to a stable solution of Eq. (32)
is found to be a center. Therefore a solution of the forced
oscillator equation (10) in the vicinity of such a point will
appear as oscillations at the fundamental spatial frequen-
cy (wave number) modulated by a low-frequency envelope
(beats). In Sec. IV such a behavior is found by numerical
simulation of Eq. (10) near this resonance.

C. The resonance near N*=2
The third resonance to be considered occurs for
N4=2(1+k), |k|l<<1, (33)

so that it is the second harmonic of an oscillation at the
forcing frequency which is resonant. The two terms from
Eq. (14) which were unimportant in case B may again be
omitted, thus allowing application of well-known results
for nonlinear subharmonic resonance [11]. The steady
solution sought as in case B is

b(z)=b,cos(2z)+b cosz +b,+b,cos(4z) , (34)

with amplitudes b, b, and b, found in the form
b;=2V2e/3, by=3b3/V2, b,=—b3/V2. (35

The equation determining b, is found [cf. Eq. (32)] as
kb, —3b3=17V22 /24 , (36)

which has a single root (and exhibits monostability) if
k >0, or if k>0 with €>8V2k 3/2/51, but exhibits bi-
stability otherwise [with three roots, two of which give
rise to stable solutions of type (34)].

Higher resonances for small-amplitude oscillations,
arising when N* is close to m /n with larger m and n, can
be analyzed similarly, but are of less practical interest.
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IV. NUMERICAL SIMULATIONS

We computed numerically the ODE (10) with a(z) in
the form (11), but without restriction to € <<1. The ob-
jectives were (i) to see how much the presence of a weak
inhomogeneity can affect the shape of a soliton and (ii) to
determine the minimum inhomogeneity amplitude € at
the chosen inhomogeneity period 27 which will destroy a
soliton of specified initial intensity N2. Both these issues
are of obvious practical interest.

A. Near-resonant oscillations

The influence of forcing upon oscillations can be ex-
pected to be most dramatic close to a resonance. There-
fore to address issue (i) we first simulate the three reso-
nances analyzed in Sec. III.

In Fig. 4 we display the oscillations of soliton width

a(z), governed by Egs. (10) and (11) in the case N4=%, at
various values of € with initial conditions
a(0)=a,,=N"2%, a'(0)=0. (37

These initial conditions correspond to a “particle” initial-
ly at rest at z =0, exactly at the bottom of the potential
well of Fig. 1.

The sequence shows how the resonantly driven oscilla-
tions change with increase of the forcing amplitude €.
Even for €=0.05 [Fig. 4(a)] the oscillations are irregular,
although the fundamental period 4, corresponding to
the eigenfrequency 1 [Eq. (13)] can be seen. With in-
crease in € the oscillations become more chaotic [e.g.,
€=0.2 in Fig. 4(b)] and, finally, around €=0.25 [Fig.
4(c)] the ‘“‘particle” escapes from the well after several
large slow oscillations.

We infer that, for subharmonic resonance correspond-
ing to Eq. (15), the soliton will always be destroyed by an
inhomogeneity having amplitude exceeding a threshold
value €, lying between 0.20 and 0.25. If € <e€,,,, the os-
cillations of soliton shape are irregular (chaotic)—the
analytical theory in Sec. III being applicable only for
small values of €. Indeed, it follows from Egs. (21), (25a),
and (28) that, for K =0, the amplitude of the driven oscil-
lations is b, ~V'2e/3, whereas a characteristic width of
the potential well, estimated as a,, —ao=%N_2 (Fig. 1),
is in the present case 1/Vv'2. Thus the fact that for
€=0.05 the ratio b, /({N ~2) exceeds + explains why ap-
parently chaotic oscillations [Fig. 4(a)] appear even for a
forcing amplitude as small as €=0.05.

Figure 5 displays results of simulations of the reso-
nance (29) with k =0 and with initial conditions again of
form (37). The forcing amplitude here is €=0.0025 and
produces a quasilinear picture—with beats between a
forced oscillation at unit spatial frequency and free oscil-
lations with frequency slightly shifted due to the very
weak nonlinearity. In terms of the analytical description
(Sec. III B), the beats can be interpreted as small oscilla-
tions around the center which is the corresponding sta-
tionary point in the phase plane (as mentioned already in
Sec. IIIB). A similar picture applies for €=0.05, with
beat period reduced from around 38 to 29 but with much
increased oscillation in b,, between 0.85 and 1.27. At

large values of € the oscillations become more chaotic
and finally lead to the escape of the particle from the po-
tential well (or destruction of the soliton).

In the case of the second-harmonic resonance (33), the
criterion for smallness of € is the least restrictive. Thus,
at €=0.01, quite regular, although anharmonic, forced
oscillations are observed [Fig. 6(a)] [the initial conditions
were again taken in the form of Egs. (37)]. However, for

(a)

200 250

o
v
o
-
o
o
[
ok
o

60 80 100 120 140 160 180 200

FIG. 4. The results of numerical integration of Eqs. (10) and
(11) with the initial conditions (37) for N*=1: (a) €=0.05; (b)
€=0.20; (c) €=0.25.
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FIG. 5. The same as in Fig. 4 for N*=1, €=0.0025.

€=0.05 “beat oscillations” appear [Fig. 6(b)] and the
value €=0.25 seems to lie slightly above the escape
threshold [Fig. 6(c)].

B. Further analysis of the escape process

Since soliton destruction, represented in terms of Eq.
(10) by @ — o (escape from a potential well), is very im-
portant for applications to optical fibers, additional
analysis of the escape has been undertaken. We fixed
N*=2, €=0.01, and a’(0)=0, but gradually decreased
the initial value a (0), so that the initial “energy” of the
oscillations in the potential well increased. It should be
noted from Fig. 1 that, for unforced oscillations (homo-
geneous fibers), bounded oscillations occur only for
a(0)>ay=1/2v2~0.3536. B

Recall that the initial value a(0)=1/v"2 correspond-
ing to Eq. (37) yielded, with €=0.01, the regular oscilla-
tions shown in Fig. 6(a). For a(0)=0.6571, irregularly
modulated oscillations arise [Fig. 7(a)], with relatively
small amplitude so that each cycle appears quasiharmon-
ic. For a(0)=0.4000, we find strongly anharmonic
large-amplitude oscillations which also display irregular
modulation [Fig. 7(b)]. The strong anharmonicity is due
to the marked asymmetry of the potential well at these
amplitudes. At the still smaller value a(0)=0.3750,
similar irregular oscillations with a maximum of @ ~6 are
obtained and with minima of a at z spacings ~40. Final-
ly, for a (0)=0.3670, escape occurs. Thus, for this type
of soliton destruction, the threshold value lies in the in-
terval 0.3670<a(0)<0.3750 and so slightly exceeds the
value ay==0.3536 relevant in the absence of inhomogenei-
ty (¢=0). We conclude that the weak inhomogeneity be-
ing considered here (e=0.01) slightly narrows the range
within which the disturbed soliton of Eq. (3) remains
stable, but remark that if the amplitude of the inhomo-
geneity exceeds the threshold value €, [which for both
N*=2 and N*=1 lies near 0.25, see Figs. 4(c) and 6(c)]
the soliton completely loses its stability.

V. CONCLUSION

In this paper, we have demonstrated that a soliton can
be quite sensitive to the presence of a relatively weak in-
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homogeneity. Since the approximation employed com-
pletely ignores emission of radiation and possible depar-
ture of the soliton shape from the ansatz of Eq. (3), it
would be desirable to solve numerically the underlying
partial differential equations (PDE) (4) with a(z) in the
form (11). Very recently, a few numerical results for a

0.725 T T T T T T v T
a (a)

0.715 F

0.705 F 4

0.695 |

0.685 L 1 L L s L s

a (b)

0.72

0 20 40 60 80 100 120 140 160 180 200

16 T T T T
a (c)

z

FIG. 6. The same as in Fig. 4 for N*=2: (a) €=0.01; (b)
€=0.05; (c) e=0.25.
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(b)

0 20 40 60 80 100 120 140 160 180 200

V4

FIG. 7. The results of numerical integration of Egs. (10) and
(11) in the case of N*=2, €=0.01, a’(0)=0, with different ini-
tial values a (0): (a) @ (0)=0.6571; (b) a(0)=0.4000.

PDE which is equivalent to Eqgs. (4) and (11) have been
reported in Ref. [12]. For relatively weak inhomogeneity
it was found that shape oscillations of the soliton were lo-
cally quasiharmonic, but, over longer intervals, irregular.

No conspicuous emission of radiation or appreciable
departure from a sech profile has been noticed. In gen-
eral, these observations agree with those found in the
present work by means of the variational approximation.

This work can be extended in various directions. For
example, it would be interesting to develop a similar
analysis for a periodically inhomogeneous bimodal non-
linear fiber, for which the model system of equations
comprises two coupled NLS equations for two separate
polarizations. The variational approach to describing the
dynamics of a two-component soliton in a homogeneous
bimodal fiber has been developed in Refs. [13]. It shows
that two-component solitons possess an additional mode
of oscillation associated with relative motion of the two
components. Thus such a model contains more possibili-
ties for resonance between internal modes of a soliton and
the periodic inhomogeneity. This work is now under way
[14]. Among the preliminary results obtained there, cer-
tainly noteworthy is the splitting of a two-component sol-
iton into simple solitons due to resonance of the corre-
sponding internal mode with the spatial inhomogeneity.

Another interesting development would be to consider
models with a random inhomogeneity, in which internal
modes might resonate with a suitable spectral component
of the random inhomogeneity.

The present analysis is confined to the case of inhomo-
geneity amplitude sufficiently small that the dispersion
coefficient in Eq. (11) never becomes negative. A chal-
lenging problem would be to analyze the dynamics of
nonlinear pulses in a medium with periodic change of
sign of the dispersion coefficient.

Finally, it is remarked that the results obtained here
apply not only to optical fibers, but also to other systems
giving nonlinear guided wave propagation, e.g., to non-
linear internal wave channels in geophysical hydro-
dynamics [7].
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